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SUMMARY
Mouse spermatogonial stem cells (SSCs) can be cultured for multiplication and maintained for long periods while preserving their

spermatogenic ability. Although the cultured SSCs, named germline stem (GS) cells, are targets of genome modification, this process

remains technically difficult. In the present study, we tested TALEN and double-nicking CRISPR/Cas9 on GS cells, targeting Rosa26

and Stra8 loci as representative genes dispensable and indispensable in spermatogenesis, respectively. Harvested GS cell colonies showed

a high targeting efficiencywith both TALEN andCRISPR/Cas9. The Rosa26-targetedGS cells differentiated into fertility-competent sperm

following transplantation. On the other hand, Stra8-targeted GS cells showed defective spermatogenesis following transplantation,

confirming its prime role in the initiation of meiosis. TALEN and CRISPR/Cas9, when applied in GS cells, will be valuable tools in the

study of spermatogenesis and for revealing the genetic mechanism of spermatogenic failure.
INTRODUCTION

Spermatogonial stem cells (SSCs) are pivotal for maintain-

ing the lifelong sperm production of mammalian males.

They maintain a delicate balance between self-renewal

and commitment to differentiate for sperm production.

Mouse SSCs can be maintained under culture conditions,

continuing to proliferate for up to 2 years without losing

their spermatogenic ability as well as maintaining genetic,

epigenetic, and karyotypic stability. The cultured SSCs,

named germline stem (GS) cells, are now useful in research

on various aspects of spermatogenesis. (Kanatsu-Shinohara

et al., 2003; Kubota et al., 2004). In order to make GS cells

more widely applicable for the study of spermatogenesis at

the genetic andmolecular levels, it is desirable to be able to

modify their genome without disturbing their spermato-

genic ability. In fact, this was shown to be possible by the

transfection of genes into GS cells (Kanatsu-Shinohara

et al., 2005) or by targeting particular genes in GS cells by

homologous recombination (Kanatsu-Shinohara et al.,

2006a). Successfully treated GS cells were selected during

the subsequent cultivation and transplanted into the sem-

iniferous tubules of hostmice to produce genome-modified

sperm. These results proved that GS cells, like embryonic

stem cells (ESCs), can be used as genetically modified cells

for the production of animals with modified genomes.

Thus, GS cells appear to be a useful tool not only for the

study of spermatogenesis but also for many other areas of

biological research. However, it is rather difficult to manip-
ulate the genome of GS cells compared to ESCs because of

their low transfection efficiency, slow cycling, and difficulty

in cloning (Kanatsu-Shinohara et al., 2005, 2006b; Tamm

et al., 2013). Thus, targeted genome-modifying experiments

usingGScells arenot common, and, to thebestofourknowl-

edge, only three reports have beenpublished (Iwamori et al.,

2012; Kanatsu-Shinohara et al., 2006a, 2008a).

Recently, new genome-modifying methods using se-

quence-specific endonucleases, such as zinc-finger nuclease

(ZFN), transcriptionactivator-likeeffectornuclease (TALEN),

and clustered regularly interspaced short palindromic repeat

(CRISPR)-associated protein 9 (CRISPR/Cas9) systems, were

developed one after another (Gaj et al., 2013). In addition,

gene-targeting experiments with these nuclease systems

were very recently reported to be successful in SSC lines

(Fanslow et al., 2014;Wu et al., 2015, Chapman et al., 2015).

In the present study, we adopted the double-nicking sys-

temof CRISPR/Cas9 and tested it, alongwith TALEN, onGS

cells. Our results demonstrated that these artificial endonu-

cleases are powerful tools for genetic-modification experi-

ments in GS cells, providing an effective way to study the

genetic mechanism of spermatogenic failure in particular.

RESULTS

Preparation of TALEN and CRISPR/Cas9 Plasmids

Targeting the Rosa26 Locus

We designed TALEN and CRISPR/Cas9 constructs target-

ing a site in the first intron of the Rosa26 locus that was
Stem Cell Reports j Vol. 5 j 75–82 j July 14, 2015 j ª2015 The Authors 75

mailto:tsato@yokohama-cu.ac.jp
mailto:ogawa@yokohama-cu.ac.jp
http://dx.doi.org/10.1016/j.stemcr.2015.05.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stemcr.2015.05.011&domain=pdf


TA
LE

N WT

TA

＊ ＊ ＊ ＊ ＊ ＊ ＊ ＊

C
R

IS
P

R
/C

as
9

WT

TA

＊ ＊ ＊ ＊ ＊

10K
7K
5K

2K

1   2   3   4   5   6   7   8

CRISPR/Cas9B

C

D

Mouse Rosa26 
allele

SA EGFP IRES Puro
Targeting vector

1 2

1 2SA EGFP IRES Puro
Targeted 
allele

800 bp2,832 bp

2,552 bp

1,678 bp
5,384 bp

Probe
XbaI

7 kbXbaI

800 bp

A
P1

P2P1 P3

P2

2.5K
2.0K
1.6K

2.5K
2.0K
1.6K

M   1     2  3    4    5    6    7     8 W

M  W   1   2   3    4    5    6   7   8   9 10  11    

TALEN
W  1   2   3    4    5    6    7   8    9  10  11

10K
7K
5K

2K

Figure 1. Gene Targeting of the Rosa26 Locus in GS Cells
(A) Schematic overview of the targeting strategy for the Rosa26 locus. Arrows (P1, P2, and P3) are primer sites for PCR genotyping. P1 and
P2 primers are located at outside the region of homology arms. The P3 primer is located in the transgene. Expected sizes of PCR products are
2,552 bp in wild-type and 1,678 bp in targeted alleles. The probe used for Southern blot analysis is shown as a green bar. SA, splicing
acceptor; IRES, internal ribosomal entry site; Puro, puromycin-resistance gene.
(B) Targeted GS cells using TALEN express GFP, demonstrated by a merged image of GFP (green) and differential interface contrast (DIC).
(C) Genotyping PCR of GS cells targeted using TALEN or CRISPR/Cas9, selected by puromycin treatment, and picked up without confirming
GFP expression. The M and W lanes show a 200-bp ladder marker and wild-type controls, respectively. Asterisks indicate homozygously
targeted clones. WT indicates the position of the band derived from the original wild-type Rosa26 locus, while TA indicates that from the
targeted allele.
(D) Southern blot analysis of GS cells targeted with TALEN or CRISPR/Cas9. XbaI-digested genomic DNA was hybridized with a GFP probe.
Expected fragment size is 7 kb.
Scale bar, 100 mm (B).
previously targeted successfully with the ZFN system

(Perez-Pinera et al., 2012) (Figure S1A). The Rosa26 locus

was chosen because inserted genes will be expressed

ubiquitously without any additional effects on the charac-

teristics of target cells (Zambrowicz et al., 1997). Thus, the

targeted GS cells were expected to maintain spermato-

genic competency. We used the Platinum TALEN plasmid,

which has enhanced cleavage activity compared to con-

ventional TALEN (Sakuma et al., 2013). As for CRISPR/

Cas9, we chose the pX335 CRISPR/Cas9 expression vector,

which uses a double-nicking strategy, by which the occur-

rence of a double-strand break (DSB) becomes more

specific and accurate (Mali et al., 2013; Ran et al., 2013).

To confirm the target-site-specific cutting efficiency of

the TALEN and CRISPR/Cas9-expressing vectors, we

performed a Surveyor nuclease assay with the cell line
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15P-1, which confirmed their accurate and sufficient cut-

ting efficiency (Figure S1B).

Gene Targeting of the Rosa26 Locus Using TALEN and

CRISPR/Cas9

The construct of the targeting vector was composed of a

splice acceptor, an EGFP, internal ribosome entry sites,

and puromycin-resistant gene sequences, sequentially con-

nected in this order and flanked with short homologous

sequences on both the 50 and 30 sides (Figure 1A). When

gene targeting is successful, the targeted GS cells express

GFP and become resistant to puromycin.

We performed transfection with the targeting vector

together with the TALEN or CRISPR/Cas9-expressing vec-

tor by electroporation of GS cells derived from the wild-

type mouse. Approximately 2 weeks after electroporation,



Table 1. Summary of Targeting Experiments Using TALEN and CRISPR/Cas9

Targeting Vector
No. of Clones
Analyzed

No. of Non-targeted
Clones

No. of Targeted
Clones

No. of Random
Integration

Homozygous
Insertion

TALEN Rosa-SA-GFPiPuro 12 1 11 0 8/11

CRISPR Rosa-SA-GFPiPuro 8 0 8 0 5/8

CRISPR Stra8-tdTomato-PGK-Puro 18 0 18 0 3/9

6/9a

aDouble doses of CRISPR/Cas9 and targeting vectors were used for transfection.
the selection of GS cells with puromycin was initiated. Pu-

romycin-resistant colonies became apparent in �1 week,

and some of them were picked up for cloning without

checking GFP expression. We obtained 12 and 8 clones of

transfected GS cells with TALEN and CRISPR/Cas9, respec-

tively. Excluding one clone produced by TALEN, every GS

cell clone expressedGFP (Figure 1B).We used PCR genotyp-

ing to examinewhether the Rosa26-targeting construct was

integrated into the target site. All of the 11 and 8 GFP-

expressing clones induced by TALEN and CRISPR/Cas9,

respectively, showed the correct insertion of the target

sequence into the Rosa26 locus (Figure 1C). Among them,

8 out of the 11 clones and 5 out of the 8 clones showed ho-

mozygous insertion (Figure 1C). Southern blotting analysis

demonstrated that there was no integration of the donor

construct other than at the target site (Figure 1D). Collec-

tively, targeting efficiencies mediated by TALEN and

CRISPR/Cas9 were quite high: 11 clones out of 12 and all

8 clones, respectively (Table 1). Thus, these results indicate

that genome editing mediated by the TALEN or CRISPR/

Cas9 double-nicking system was highly effective in intro-

ducing a transgene at target site in the genome of GS cells.

Spermatogenic Ability of Targeted GS Cells

We tested whether those GS cells with a target construct at

the Rosa26 site (Roas26-GS cell) remain as functional SSCs

and differentiate into competent sperm. We transplanted

lines of Rosa26-GS cells into the testes of W/Wv (W) mice

whose testes contain very few germ cells because of genetic

defects in the c-kit gene, making them an ideal host testis.

The transplanted Rosa26-GS cells colonized the seminifer-

ous tubules and formed stretches of colonies that expressed

GFP (Figure 2A). By histological observation, we confirmed

that those colonies supported spermatogenesis up to sperm

formation. The immunohistologic features, as well as regu-

lar histological findings on periodic acid-Schiff (PAS) stain,

demonstrated normal spermatogenesis (Figures 2B, 2D,

and 2E). When testis tissue was dissociated, spermwere ob-

tained (Figure 2C). In summary, we transplanted 11 and

4 clones of Rosa26-GS cells of TALEN and CRISPR/Cas9,

respectively, resulting in 9 and 4 clones giving rise to sper-
matogenesis, respectively. The two clones of Rosa26-GS

cells with the TALEN procedure showed neither coloniza-

tion nor spermatogenesis in the W mouse testes, for un-

known reasons.

Next, we tested the fertility of those sperm by intracy-

toplasmic sperm injection (ICSI). We chose the clones of

TALENs #8 and #9 (Figures 1C and 1D). All (n = 113)

oocytes fertilized by ICSI developed into the two-cell stage

on the next day (Table S1). Following embryo transfer, 8

and 23 offspring were delivered from clones #8 and #9,

respectively, and all grew healthily (Figure 2F; Table S1).

As both clones were targeted homozygously (Figure 1C),

all offspring carried the inserted GFP heterozygously (Fig-

ure S2A) and expressed GFP throughout the body (Fig-

ure 2F). When their reproductive potential was examined

by brother-sister mating, they gave birth to offspring,

proving its reproductive competency. The second-genera-

tion progeny also grew normal and were healthy (Figures

S2B–S2D). These results demonstrate that gene modifica-

tion of GS cells using a TALEN and CRISPR/Cas9 double-

nicking system did not affect the characteristics of GS cells,

both as stem and spermatogenic cells.

Gene Targeting of Stra8 Gene Using CRISPR/Cas9

The genetic modification techniques when applied to GS

cells could be a useful means to examine the function of

particular genes during spermatogenesis. Using the dou-

ble-nicking CRISPR/Cas9, we tried to disrupt the gene of

Stimulated by retinoic acid gene 8 (Stra8) by inserting the

targeting vector sequence. Stra8 expression is induced by

retinoic acid (RA) in spermatogonia and is responsible for

entry into meiosis (Baltus et al., 2006; Zhou et al., 2008).

We constructed a CRISPR/Cas9-expressing vector, which

includes sequence of guide RNA specific to a site in the

fourth exon of the Stra8 gene (Table S2), and a targeting

vector, which contained tdTomato fluorescence, PGK pro-

moter, and Puro sequences (Figure 3A).We used these three

vectors to transfect GFP-GS cells that express GFP constitu-

tively. Amounts of vector DNA transfected were 2 and 6 mg

of CRISPR/Cas9 and targeting vectors, respectively, or dou-

ble doses of them. Nine colonies resistant to puromycin
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RPSIRCNELAT

Day 62

W mouse testis

Day 159

A

TALEN clone #8

TALEN clone #9

FB C D

Day 186

GFP
PNA

Hoechst

CRISPR
GFP
PNA

Hoechst

TALEN

Day 62

GFP
Hoechst

TALEN

Day 62

Day 159

E CRISPR

Day 159

Figure 2. Spermatogenic Ability of Targeted GS Cells
(A) Recipient testes transplanted with GS cells targeted by TALEN and CRISPR/Cas9 contained seminiferous tubules expressing GFP, which
indicates GS cell colonization. A non-transplanted recipient testis (W mouse) did not show GFP expression.
(B) Immunostaining of recipient testis tissue cryosections, transplanted with Rosa26-GS cells targeted by TALEN. Peanut agglutinin
(PNA), which reacts with the acrosome, appears as red. Anti-GFP (green) and counterstain with Hoechst dye (blue) were merged.
(C) Flagellated sperm derived from mechanically dissociated host testis transplanted with Rosa26-GS cells targeted with TALEN.
(D) Immunostaining of recipient testis tissue transplanted with Rosa26-GS cells targeted by CRISPR. PNA (red), anti-GFP (green), and
counterstain with Hoechst dye (blue) were merged.
(E) A recipient testis transplanted with GS cells targeted by CRISPR/Cas9 shows extensive colonization on day 159 after transplantation
(left). This testis processed for histological examination showed normal spermatogenesis with PAS stain (right).
(F) Offspring obtained using the ICSI procedure with sperm derived from two Rosa26-GS cell clones (#8 and #9) targeted with TALEN. GFP
expression throughout the bodies of the offspring was confirmed under UV light.
Scale bars represent 1 mm (A and E, left), 200 mm (E, right), 100 mm (B), 50 mm (D), or 20 mm (C).
were picked up from each plasmid dosage group, resulting

in 18 clones in total (termed Stra8-GS cells). Each clone was

examined by PCR genotyping and Southern blotting to

show that the Stra8-targeting construct had been inte-

grated into the target site correctly, without random inte-

gration (Figures 3B and 3C). The homologous insertion

was noted in three out of nine clones and six out of nine

clones, respectively, for each dose set of vectors (Figure 3B).

When Stra8-GS cells were cultured in a medium with RA

added for 2 days, almost all Stra8-GS cells expressed tdTo-
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mato, confirming that the expression of the inserted

construct was induced by RA (Figure 3D). We then chose

a line of homozygously knocked in Stra8-GS cells and trans-

planted them into the testes of W mice. Eighty-four days

after, on analysis, the recipient testis showed extensive

colonization by GS cells, appearing as tubules colored

with GFP (Figure 3E). The colonized cells, however, ap-

peared to be restricted to the periphery of the seminiferous

tubules, indicating that they were located on the basement

membrane without differentiation to the inside of the
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Figure 3. Targeting of the Stra8 Gene in GS Cells Using CRISPR/Cas9
(A) Schematic overview of the targeting strategy for the Stra8 gene. Arrows (P1, P2, and P3) show primer sites for the genotyping
PCR. P1 and P2 primers are located outside the region of the homology arm. The P3 primer is located in the transgene. Expected sizes
of the PCR products are 1,687 bp in wild-type and 1,542 bp in targeted alleles. The probe used for Southern blot analysis is shown as
a green bar.
(B) PCR genotyping of Stra8-GS cells targeted with CRISPR/Cas9. The leftmost lane shows a 200-bp ladder marker. The W lane shows wild-
type controls. Asterisks indicate homozygously targeted clones.
(C) Southern blot analysis of Stra8-GS cells. SpeI-digested genomic DNA was hybridized with the tdTomato probe. The expected fragment
size is 6.6 kb.
(D) Expression of the tdTomato was induced in Stra8-GS cells by RA addition to the medium in 2 days. A merged image of tdTomato (red),
GFP (green), and DIC is shown.
(E) A recipient testis transplanted with Stra8-GS cells shows extensive colonization of the GS cells. The inset shows a magnified view of the
same testis.
(F) H&E staining of a cryosection of the recipient testis, showing no meiotic differentiation.

(legend continued on next page)
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tubules. Histological analysis showed that there were

tubules containing spermatogonia lining the basement

membrane with no progression of spermatogenesis (Fig-

ure 3F), which was exactly the same as the phenotype of

Stra8-deficient mice (Baltus et al., 2006). Furthermore, we

performed an immunohistological examination with anti-

bodies to tdTomato andGFP and found that the expression

of tdTomato in spermatogonia was different from tubule to

tubule (Figure 3G). This observation is consistent with a

previous report that the expression of Stra8 was periodic

in spermatogonia and spermatocytes, depending on the

wave of the seminiferous epithelium (Zhou et al., 2008).

Together, these results demonstrate that CRISPR/Cas9-

mediated gene disruption is effective in GS cells, the effects

of which could appear as a particular phenotype in sper-

matogenesis following transplantation into the host testis.
DISCUSSION

In the present study, we succeeded in genomemodification

of the Rosa26 locus and Stra8 gene using TALEN or CRISPR/

Cas9 systems, with extremely high-level efficiency and

accuracy. The accuracy of CRISPR/Cas9 was comparable

to that of TALEN and was actually perfect, probably owing

to the double-nicking system we used.

In a previous report, the gene-targeting efficiency in GS

cells without genome-editing technology was as low as

1.7%, as 2 out of 120 clones were selected (Kanatsu-Shino-

hara et al., 2006a). Using TALEN and CRISPR/Cas9 in the

present study, the targeting efficiency appeared surpris-

ingly high, because most of the picked-up colonies showed

successful gene targeting. This efficiency is comparable to

or even higher than that in other reports using TALEN

with human ESCs, which showed 42% to 100% (Hocke-

meyer et al., 2011). These results confirm that DSB induc-

tion can promote homologous recombination significantly

in GS cells as well.

Very recently, two groups reported gene-targeting exper-

iments with GS cells using ZFN and CRISPR/Cas9 systems,

respectively (Fanslow et al., 2014;Wu et al., 2015). Fanslow

et al.’s group reported to have succeeded in genome editing

in GS cells with the ZFN system. The targeted GS cells,

however, appeared to have lost their spermatogenic ability,

being unable to differentiate into sperm following trans-

plantation into the host testis. Wu et al.’s group treated a

genetic defect of a single-nucleotide deletion in a mutant
(G) Immunostaining of recipient testis tissue transplanted with Stra
express tdTomato. tdTomato (red), anti-GFP (green), and counterstai
lines delineate seminiferous tubules containing tdTomato-positive an
Scale bars represent 1 mm (E), 100 mm (D), or 50 mm (F and G).
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mouse, which causes cataract, using CRISPR/Cas9 in GS

cells. The sequence covering the deletion site was replaced

by the 89 bp of single-stranded oligodeoxynucleotides,

which resulted in correction of the mutation. The treated

GS cells, after transplantation into the host mouse testis,

differentiated into haploid cells, which were used for the

production of progeny not showing cataract. These two re-

ports demonstrated that GS cells, as well as many other so-

matic cells or cell lines, can be genomically manipulated

with those sequence-specific endonuclease systems. The

latter one, in particular, showed that the correction of a

mutated sequencewas possible inGS cells, whereby genetic

diseases caused by such mutations can be eliminated from

subsequent generations.

In the present study, we showed that both TALEN and

double-nicking CRISPR/Cas9 were effective for genome ed-

iting in GS cells. In fact, we demonstrated that 2.8–4.7 kbp

of transgenes could be successfully introduced accurately

into the target site in the genome of GS cells. This result

suggests that genome-editing technology in GS cells allows

us to repair more extensive mutations than those

involving single nucleotides. More importantly, our study

demonstrated that the Rosa26-GS cells retained full capac-

ity for complete spermatogenesis up to the formation of

competent sperm, which was not shown in either of the

two previous studies. It is noteworthy that GS cells are

prone to lose spermatogenic potential, possibly after being

cultured under stressful conditions such as overgrowth,

repeated freezing and thawing, or high passage numbers.

In an extreme case, GS cells not only lose spermatogenic

ability but also gain multipotency, turning into ESC-like

cells (Kanatsu-Shinohara et al., 2004). In order to make

GS cells useful for the study of spermatogenesis, this

characteristic of GS cells must be kept in mind. In the pre-

sent study, we successfully showed that the spermatogenic

ability of GS cells was disturbed when the Stra8 gene was

disrupted. This result demonstrated that GS cells can be

used to test whether or not a particular gene or genes are

functioning in spermatogenesis when cultured under the

appropriate conditions.

As was shown in this study, along with many other

previous studies, TALEN and double-nicking CRISPR/

Cas9 genome-editing techniques are significantly accu-

rate, with only a negligible risk of random gene disrup-

tion, in the drug-selected clones. This result indicates

that disrupting a particular gene without disturbing any

other genes in GS cells could replace gene-manipulating
8-GS cells, confirming colonization of the GS cells, some of which
n with Hoechst dye (blue) were merged. The red and white dotted
d tdTomato-negative spermatogonia, respectively.



technologies with ESCs in the study of spermatogenesis.

When GS cells of species other thanmice become available

for gene targeting as well, it may become possible to study

the role of particular genes in their spermatogenesis,

which would be rather difficult or practically impossible

with ESC technology. In fact, culturing of the SSCs of

the rat, hamster, and rabbit was reported to be feasible

(Hamra et al., 2005; Kanatsu-Shinohara et al., 2008b; Ku-

bota et al., 2011; Ryu et al., 2005), making this research

strategy realistic. In addition, whole-genome sequencing

is now available, owing to the many technological inno-

vations in that field. Based on such a huge volume of

genome information along with sophisticated analysis

methods, genetic analysis of infertile patients (azoo-

spermia in particular) could reveal genes responsible for

spermatogenic failure. The genome-modifying technolo-

gies shown in this study will be extremely useful to

examine such candidate genes responsible for spermato-

genic defects in the future.
EXPERIMENTAL PROCEDURES

Animals and Culture of GS Cells
To establish wild-type GS and GFP-GS cells, male C57BL/6 (CLEA

Japan) and C57BL/6-Tg (CAG/Acr-GFP) (Okabe et al., 1997) trans-

genic mice, respectively, were mated with wild-type ICR females

(CLEA Japan) to produce F1 pups. The testes of F1 pups were

dissected out and used as a source of GS cells. The culture medium

used for GS cells was StemPro-34 based (Kanatsu-Shinohara et al.,

2003), with minor modifications (Sato et al., 2013). Wild-type GS

and GFP-GS cells were used for targeting experiments of Rosa26

and Stra8, respectively. WBB6F1-W/Wv (Japan SLC), at 6–15 weeks

old, were used as recipients for spermatogonial transplantation.

W/Wv allows colonization of GS cells of ICR/B6 background

without apparent rejection (Araki et al., 2010). The spermatogenic

ability of GS cell lines was checked by transplantation into the

testes of W/Wv before using for targeting experiments (Figures

S3A and S3B). All animal experiments conformed to the Guide

for the Care and Use of Laboratory Animals and were approved by

the Institutional Committee of Laboratory Animal Experimenta-

tion (Animal Research Center of Yokohama City University, Yoko-

hama, Japan).

Gene Targeting of GS Cells
GS cells used for targeting to Rosa26 and Stra8 were at passages

6 and 8, respectively. They were harvested using 0.25% trypsin,

and 1.5–4 3 106 cells resuspended in T solution of Cell Line

Nucleofector Kit were electroporated with 6 mg of targeting vector

plasmids and 2 mg of each TALEN or CRISPR/Cas9-expressing

plasmid using Nucleofector 2b with program A-023. Selection

with puromycin (0.15 mg/ml) was performed 10–14 days after

electroporation. When puromycin-resistant colonies expanded,

usually at �4 weeks after electroporation, we picked up individual

colonies using a micropipette (P200 pipetman) under an inverted

microscope for successive culturing.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, three figures, and two tables and can be found with

this article online at http://dx.doi.org/10.1016/j.stemcr.2015.05.

011.
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